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ABSTRACT

Several optimization problems seek a path of predetermined length in a state
space that minimizes a cost function. Conventionally, such problems are tackled
by dynamic programming (DP) applying a Bellman-type equation. A prominent
example is Viterbi decoding, which returns the path in a Hidden Markov Model
that best explains a series of observations, with applications from bioinformatics
to communication systems and speech recognition. However, DP-based solutions
(i) exhaustively explore a search space linear in both state space size and path length
in time quadratic in state space size, without exploiting data characteristics, and
(ii) require memory commensurate with that search space to reconstruct the optimal
path. In this paper, we propose Isabella (Dijkstra-Bellman), a novel framework that
finds optimal paths of predetermined length in time- and space-efficient fashion
by a combination of best-first-search, depth-first-search, and divide-and-conquer
strategies. The best-first-search component avoids the exhaustive exploration of
the search space using a priority queue; the depth-first-search component keeps the
size of that queue in check; and the divide-and-conquer component constructs the
optimal path recursively with low space complexity after determining its cost. We
apply Isabella to Viterbi decoding, introducing algorithms that prioritize the most
promising pathways and control memory consumption. To emphasize the generality
of Isabella, we also instantiate it with an algorithm for histogram construction.
To our knowledge, no previous work addresses such problems with this novel
combination of strategies. Our experimental evaluation shows our solutions to be
highly time- and space-efficient compared to standard dynamic programming.

1 INTRODUCTION

Several problems that call to find an optimal sequence of given length L over a state space of size n
are conventionally solved by dynamic programming (DP). Two prominent examples are Viterbi
decoding, i.e., finding a sequence of hidden states—a Viterbi path—in a Hidden Markov Model
(HMM) that best explains an observed event sequence (Viterbi, |1967; 2006) and finding a sequence
of bucket boundaries—a V-optimal histogram—over a value sequence that minimizes the aggregate
Euclidean error when assigning one representative to each bucket (Bellman| [1961; Jagadish et al.|
1998). As we show, the underlying formulation of the solution is the same.

Such DP algorithms use the solutions to all length-%k subproblems to solve all length-k+1 subprob-
lems; to build the optimal sequence after reaching the target length L, one may follow one of two
strategies: (i) the memoization strategy retains and backtracks over processed subproblem solutions
per step, requiring ©(nL) space and O(n?L) time; (ii) the in-place strategy discards processed sub-
problem solutions and reruns the algorithm from scratch and on-demand backwards per step, hence
requires O(n) space but O(n?L?) time. An algorithm recently proposed by Ciaperoni et al. (2022}
2024) constrains space to O(n) and runs in O(n?Llog L) time, but still evaluates all subproblems
exhaustively and indiscriminately, constraining its scalability to large problem instances. Still, in
practice only a few subproblems aid the solution, while most are subpar building blocks; despite their
long history, state-of-the-art DP algorithms fail to utilize this fact.

In this paper, we introduce Isabella (Dijkstra-Bellman), an algorithm design framework for the
space- and time-efficient optimization of predetermined-length sequences, such as Viterbi paths and
V-optimal histograms. Isabella combines best-first search, depth-first search, and divide-and-conquer
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components. The best-first-search (BestFS) component prioritizes the most promising subproblems
to avoid exhaustively exploring the subproblem space and enhance time efficiency. We also use
bidirectional search and a bounding scheme for more effective subproblem prioritization. Of course
the applicability of BestFS to find an optimal-cost path of arbitrary length is straigthforward (Russell
& Norvig, 2010); however, its application to find an optimal-cost path of a predetermined length
raises additional space requirements for (i) tabulating the optimal cost per state and step to enable
backtracking of the optimal sequence and (ii) maintaining a correspondingly larger priority queue. To
ameliorate these memory requirements, we amend BestFS with a depth-first search (DFS) strategy that
prevents the priority queue from overextending and a divide-and-conquer (D&C) provision that omits
tabulating all subproblem solutions. These innovations reduce both time and space requirements,
while allowing one to control the ensuing tradeoff between time and memory demands via a tunable
space budget parameter. To our best knowledge, no previous work tackles problems of this type as
we do. We apply Isabella to Viterbi decoding (Viterbi, |1967) and V-optimal segmentation (Jagadish
et al.,|1998) and evaluate our solutions over real and synthetic data, showing that they gain in both
runtime and memory vs. DP algorithms, especially under skewed distributions of path costs.

2 BACKGROUND AND RELATED WORK

Dynamic programming (DP) (Bellman, |1966) recursively decomposes a problem into subproblems,
exploiting an optimal substructure property, by which a globally optimal solution combines locally
optimal solutions. Nevertheless, its application is constrained by its computational requirements.

Best-First search (BestFS) (Pearll [1984) repetitively expands a most promising partial solution to a
problem. Dijkstra’s algorithm (1959) finds a minimum-cost path of arbitrary length from a start to
an end node; in each iteration it explores, i.e., visits the neighbors of, the nearest unexplored visited
node, until it reaches the end node. This algorithm resembles a DP algorithm (Sniedovich} 2006), as
it exploits optimal substructures to expand its solution. Thus, DP and BestFS are closely intertwined.
We build upon this connection, applying BestFS to find an optimal-cost path of fixed length. We
stress that, contrariwise to the Dijkstra algorithm, our task requires monitoring both path length and
cost. A* (Foead et al.}[2021)) augments Dijkstra with a heuristic that prioritizes paths appearing closer
to the end, while the search may proceed from both start and end by bidirectional search (Pohl, |1969).

Hidden Markov Models (HMMs) explain observation sequences. An HMM comprises a set of K
hidden states, each with probabilities to be an initial state, transition to other states, and emit an
observation. Decoding seeks a sequence of states most likely to generate a sequence of observations:

Problem 1 (Decoding). Given an HMM and a sequence of T observations Y = {y1,y2,...,yr},
find the sequence of hidden states Q = {s3, s3, ..., sk} that maximizes the likelihood P(Q,Y).

The Viterbi algorithm (Viterbil 1967} [20006) solves Problem E]optimally by DP; it finds application
from networking and telecommunications (Viterbi, |2006) to speech recognition (Gales & Young,
2007} Braun et al.| 2020), where it serves to find the most probable transcription for an input acoustic
signal, or for forced alignment, the task of aligning orthographic transcriptions to audio recordings.
In modern speech-recognition systems, the Viterbi algorithm runs on the composition of several
small HMMs in which states represent words and their phonemes, to find the best transcription
of a spoken utterance. However, this algorithm raises high memory and runtime requirements.
A recent work (Jihyuk Jo, |2019) on HMM-based isolated word recognition employed a search
heuristic, without proving its correctness. Another recent work (Ciaperoni et al.| 2022) enhances the
space efficiency of decoding at the cost of a runtime overhead. Other works reduce the state space
representation for particular classes of HMMs (Siddiqi & Moore, |2005; [Felzenszwalb et al., | 2003)).
Still, the time complexity of the algorithm remains prohibitive for problem instances with large state
space and long observation sequences. We aim to improve upon both the time and space efficiency
of Viterbi decoding by provably correct best-first search, pruning, and bounding policies. This is a
difficult undertaking, as indicated by derived lower bounds (Backurs & Tzamos|,2017)).

Histogram construction calls to segment a data series to a predetermined number of buckets, each
with one representative, to minimize the overall representation error:

Problem 2 (Histogram Construction). Given I = {z1,...2,}, ¥; € R, and B € 77, find a
segmentation (or histogram) Hp of I into B non-overlapping subsequences (or buckets) I, with
associated bucket representatives Iy, that minimizes error function E; (Hp).
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Problem@]is central in data summarization (Halim et al.| | 2009). We focus on V-optimal histogram
construction (Jagadish et al., |1998)), i.e., Problem 2| with E; (Hg) = 25:1 E,, where E, =
> vch (z;— i’b)Q, and  is the mean of values in bucket ;. This extensively studied problem (Guha
et al.,[2000) is solved optimally by a DP (Jagadish et al.,|1998)) algorithm with quadratic dependence
on n. Our framework offers significant gains in histogram construction and is extensible to any
monotonic and distributive (Karras & Mamoulis} [2008) error measure E; (Hp).

Semirings and Dioids (Gondran & Minoux} [2008) A semiring is a 5-tuple (D, ®, ®, 0, 1), where D
is a non-empty set, & is a binary, associative, and commutative operator, & is a binary and associative
operator, 0 is a neutral element for & (i.e.,  § 0 = z, for all z € D), 1 is a neutral element for ®
(e,r®1=1®x =z, forall z € D), the operator ® distributes over & and 0 is absorbing for ®
(e, z2®0=0®x =0, forall x € D). A selective dioid is a semiring in which @ is also selective
(e, (x@y=2)V(xdy=y),forall x,y € D). Selective dioids provide an abstract expressive
framework for shortest-path and DP problems (Mohril, 2002 [Huang| |2008} (Tziavelis et al., [2020).

3 THE ISABELLA FRAMEWORK

Isabella solves problems seeking a given-length sequence that optimizes a cost measure, which are
typically solved by dynamic programming, visiting subproblems in a fixed order, oblivious of the
fact that several subproblems do not contribute to the final solution. Contrariwise, Isabella solves
subproblems in a best-first fashion until a stopping condition is met. Figure[I]shows an example.
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Figure 1: Each cell records the cost of a sub-problem; classic DP solves all sub-problems; Isabella
finds the same solution, but avoids considering sub-problems in green.

Next, we define Isabella and apply it to Viterbi decoding (§[3.2) and histogram construction (§ [3.4).

3.1 THE FRAMEWORK

Isabella starts out with the following components:

1. A data space X of n elements endowed with a concept of eligible sequence (x;), x; € X,
j €{1,..., ¢}, where (s the length of (z;); a sequence is eligible if i — 1 € N (i) for all
i € {2,...,0} and a given neighborhood function N(-).

2. The set X of all eligible sequences in X'.

. A gap function G(j,1) associating a value with the transition from item j to item 4.

4. A selective dioid D = (D,®,®,0,1), which is used to express the value function for a
sequence: f(x) = ®§;L_1 G(j,5 +1).

5. A problem that seeks an eligible sequence x* € X of length L and optimal value f(x*);
sequences are compared via the & operator.

6. A recursive function Opt(i, £) that stores the optimal value for an eligible sequence of
length £ ending at item z; € X.

7. A solution to the problem in Item [5|by DP over sequences of increasing length from X'

(O8]

The solution in Item [7| finds an eligible sequence of L data items x* = {z},x5,..., 2} } that
optimizes Opt(-, L); the selective dioid properties, in particular distributivity, guarantee correctness.
The DP computation takes the form:

Opt(i,0) = @D {Opt(j, £ — 1) ® G(j,4)}. 6
JEN ()

The recursion of Equation [1| requires ©(n?L) time and ©(nL) space, iterating over items i and
lengths ¢ and storing, for each (¢, £) pair, a predecessor needed to backtrack the optimal sequence.
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The entailed solution may be implemented by either DP or roken passing (Young et al., [1989); both
calculate all solutions of length ¢, Opt(-, £), before those of length £+ 1, Opt(-, £+ 1), by breadth-first
search. DP draws from solutions of length ¢ to build each solution of length ¢ + 1 by a pull approach.
Token passing broadcasts a token for each solution of length / to its continuations of length ¢ + 1 by
a push approach. In both cases, solutions solidify at length ¢ before moving to length ¢ + 1.

Isabella abolishes this breadth-first orientation in favor of a best-first one; it organizes sub-problem
solutions (represented by tokens) in a priority queue Q in which it initially inserts all tokens (-, 1).
Thereafter, in each step, it selects the most promising token (4, ¢) from Q and, for each eligible
successor (7, ¢ + 1) not already extracted from Q, it computes Opt(j, £) + G(j, ¢) and updates the
priority of (i, ¢+ 1) in Q accordingly. Isabella resembles Dijkstra’s shortest-path algorithm (1959);
however, whereas Dijkstra minimizes a cost objective regardless of length (i.e., number of steps),
Isabella optimizes the objective under a fixed-length constraint. In the worst case, it examines all
sequence continuations for each length, hence takes O(nL(n + lognL)) time, where the lognL
term expresses the overhead of maintaining the priority queue, more compactly O(nL(n + log L)).
However, in practice, it gains performance as it quickly derives tokens corresponding to DP table
cells without considering all possible paths and does not produce some tokens at all. As we will see
in Section[d] this pruning capacity results in significant runtime savings, particularly in real problem
instances. In the best case, Isabella may produce only L tokens, each in constant time.

Nevertheless, the priority queue Q may reach size ©(nL), holding one token for each state-length
pair, while we need to keep all tokens in memory after popping them from Q to facilitate backtracking
the solution sequence. To contain this space demand, we eschew backtracking and instead reconstruct
the solution by a divide-and-conquer strategy as in (Ciaperoni et al., 2022} 2024) that achieves O(n)
space and O(n?L log L) time; we keep the size of Q in O(n) by a depth-first-search strategy.

In our Isabella variants, we anticipate, by bounding, the values a sequence may achieve as it expands
and prioritize tokens according to those anticipatory values. We also derive bidirectional-search
variants that produce both prefixes and suffixes of sequences until they reach the target length.

3.2 THE MINT ALGORITHM

The Viterbi algorithm selects a sequence of T states Q = {s}, s5,..., sk} from a universe of K
HMM states S = {s1, s2, ..., Sk} that is most likely to have generated a sequence of T observa-
tions Y = {y1,92,...,yr}. Q is called Virerbi path. By the Markov property, the likelihood to be in
a state depends only on the previous state. Therefore, the Viterbi algorithm uses the DP recursion:

T[si, 1] = s, - Bs, y1,

T[Suﬂ Shenj\lf?nx(sz') {T[Shat 1] As}usi} Bsmyt (2)
where T[s;, t] stores the probability of the most likely path ending at state s, in ¢ steps, or fime frames,
Nin(si) is the set of in-neighbors of s;, 7; is the initial probability of s;, As, s, is the probability of
transiting from state sy, to state s; on a directed graph G capturing eligible transitions in the HMM,
and By, ,, is the probability of observing y; at state s;. This setting suits Isabella as follows:

1. The data space X is the universe of K hidden states S = {s1, 82, ..., Sk } and an eligible
sequence (z;), z; € X, j € {1,...,¢} is a path of consecutive states in the HMM graph G.

2. The ser X of all eligible sequences in A’ is the set of all possible paths in the given HMM.

3. The gap function G(j,1) is expressed as As; s, Bs,y,, or, in the domain of log-probabilities,
as log Ay, s; +10g By, .

4. The selective dioid is ([0, 1], max,-,0,1), or, in the domain of log-probabilities,
([~o0, 0], max, 4+, —00, 0). Thus, the value function f assigns probabilities to paths, given
the sequence of observations Y = {y1,y2, ..., yr }; the probability that Y is generated by a
sequence of hidden states @ = {s1, s2,...,s7}i8 P(Q,Y) = 75, - Bs,y, HiTZQ As,_ys
B,y where 7(s1), As, ,s;, and B, are defined as above.

5. The problem seeks an eligible sequence of states () of length 7" that best explains the given
sequence of observations Y, i.e., maximizes probability (6 = max).

6. The recursive function Opt(i, £) that stores the oprimal value for an eligible sequence of
length ¢ that ends at data item z; € X is the function T[s;, t = £].

7. The solution by DP over sequences of increasing length from X is given by Equation
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The recursion of Equationrequires O(K?T) time and O(KT) space, as it iterates over states s; and
time frames ¢. For the sake of efficiency and accuracy, we replace products of likelihoods by sums of
log-likelihoods. In case the structure of G is known, we iterate only over states sy, that link to state s;,
hence visit each HMM graph edge only once; then time complexity becomes O((K + |E|)T).

The Viterbi algorithm and its token passing variant (Young et al.,{1989) operate by breadth-first search.
MINT replaces this strategy with best-first search. It organizes sub-problem solutions in a priority
queue Q and, in each step, expands the most promising one. It resembles Dijkstra’s algorithm (1959),
yet Dijkstra finds a shortest path without a constraint, while a Viterbi path optimizes path likelihood
under a fixed number of steps. MINT also resembles the Viterbi algorithm in deriving T|[s;, t 4 1]
entries from T[sy,, t] entries. Still, while Viterbi calculates all T[-, t] entries before T|[-, ¢ + 1] entries,
MINT first inserts all tokens (sp, 1) in Q and thereafter picks the most promising token (sp,t)
from Q and, for each ourgoing neighbor s; € Ny (s5) such that (s;, ¢ + 1) has not been extracted
from Q, it computes T([sy,, ] - Ay, s, - Bs, .y, and updates the priority of (s;,% + 1) accordingly.
In effect, MINT computes T|[s;,t + 1] values by push operations over outgoing neighbors s; of
each s, popped from Q. In the worst case, it visits each HMM edge once for each time frame, hence
takes O((K log KT + |E|)T) time, where log KT expresses the queue overhead. In practicality, it
never considers some HMM edges and DP cells. In the following, we illustrate four MINT variants.

Algorithm 1: Standard MINT

Data: HMM graph G, transition and emission probabilities A and B, observations Y, and initial state s.
Result: Viterbi Path Log-Likelihood max;, T[s;, T'].

Q «+ Queue((s,1),p(s,1) = —log Bs,y, );
V «— {}
while Q # 0 do
(sist),pi < Q.pop(); // (state, frame), priority
if t = T then break;
V.add((si,t));
for s; in G[s;] do
if (sj,t+ 1) ¢ V then
d < p; —logAs; s; —log Bsj y, 5
if (sj,t+ 1) ¢ Qthen Q.insert((s;,t+1),p(s;,t+ 1) =4d);
if Q[(s;,t+ 1)] > dthen Q.update((s;,t+1),p(s;,t+ 1) =4d):
return —p;;

Standard MINT. To achieve the max,, T[s;, T'] objective, we equivalently minimize the positive
path log-likelihood, — log P(Q,Y") > 0, or cost of a path. Standard MINT uses a priority queue Q
in which tokens (s;, t) are inserted and updated in logarithmic time and looked up in constant time.
For a given path @ ending at state ¢ at frame ¢, we define its priority as p(s;,t) = —log P(Q,Y),
with Q = {s!,s% ... s}, such that s* = s, and Y = {y1,vs,...,9:}. Algorithm [I| gives the
pseudocode. First we insert in Q a token for each state in the first frame with priority —,, —log B, 4, .
If a start state s is given, we only enqueue a token for s at £ = 0. The main loop iterates until reaching
the last frame ¢ = 7. In each iteration, we dequeue from Q the top token (s;,t), add it to a set V of
visited tokens, and compute the cost of reaching (s;,¢ + 1) via (s;, t) for each out-neighbor s; of s;
that has no such token in V and insert or update (s;,t + 1) in Q by that cost. When a pair (s, T) is
dequeued, no path spanning 7" frames at lower cost exists, hence we may return its cost as the Viterbi
path log-likelihood max,, T[s;, T]. All proofs are in Appendix [A]

Proposition 1. Standard MINT is correct.

To return the optimal path, MINT by defaults appends a path to each token and, when updating the
priority of (s;,t + 1), also updates the corresponding path to s;. We also craft a variant, MINT-
Backtracking, that stores only the predecessor of each token, retains all explored tokens, and at the
end constructs the optimal path by backtracking. Next, we present three extensions to MINT.

MINT Bound. We propose a variant of MINT that orders tokens by lower-bounding the path cost
from each token (s;, t) until the final frame T using a lower bound ¢; on the cost for moving from
one frame to another for the remaining 7' — ¢ frames. We call the ensuing algorithm MINT Bound.

We first insert all states (or the source state, if given) in Q with p (s, 1) = T-¢;. As the search proceeds,
we replace lower bounds with exact costs. The priority of (s;,t)isp (s;,t) = —log P(Q,Y )+ (T —t)-
¢1, @ being the current optimal path ending at s; in ¢ frames; we compute the priority of a neighbour s;

for insertion or update in Q as p (s;,t) —¢; —log Ay, s, —log B, y,.,. Upon reaching the last frame,
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all lower bounds capture exact costs. Setting ¢; as the lowest value of — log AS“S]. —log B

SjsYt+1
over all edges (s;, s;) at any ¢, found by pre-processing, ensures correctness.

Proposition 2. MINT Bound is correct.

MINT Bound encases information from unexamined time frames in the BestFS criterion and further
explores already well-explored paths without compromising the correctness of Standard MINT.

Bidirectional MINT strives for an even more efficiency by bi-directional search (Pohl, [1969) to
explore solutions both forward from the start and backward from the end time frame, using edges in
the reverse direction. We denote the graph in which all edges are reversed in direction as G.c,,.

Algorithm 2: Bidirectional MINT

Data: HMM graph G, transition and emission probabilities A and B, observations Y, and initial and final states source and target.
Result: Viterbi Path Log-Likelihood max;, T[s;, T].

Qs + Queue((source, 1), p (source, 1) = —log Bsource,y1 )}
Qb + Queue((target,T), p (target,T) = 0);

Vi {} Ve <« {}p o0

while Q, # 0 A Qf # 0 do

(sf,t7),p] = Qj.pop(): (s}, "), P}  Qu-pop():

dg[s]]  plsdy[s7) « pl:

V.add((sf,¢7)); Vip.add((s?, t%));

iftf < T then

for s; in G[s{] do

Update Q for (s;,t + 1);

if (sj,t 4+ 1) € Vi Adyg[(s],t)] - logAsf’Sj —1og Bsj y, 4y +dul(sj,t +1)] < pthen

‘ w=dsl(s],th)] - logA 5 —logBs; y,q +dul(s;t+ 1))
77
if t® > 1 then
for 5 in G rey[st] do
Update Qp for (sj,t — 1);
if (s;,t — 1) € Vy Adp[(s?,t%)] —log A, —log B, gy T drl(sj;t = 1)] < puthen
VAR M
‘ = dpl(s?,%)] — IOgASj,sl.’ —logBy , + dysl(sj,t — 1)
it dp[(s],t))] 4 dy[(s?, t*)] > pu then break;
return — ju;

In each direction, the search proceeds as in Standard MINT, yet with two priority queues, Qy for
forward search and Q, for backward search. Qy is initialized as in Standard MINT. Similarly, we
start by enqueueing all states in Qy, or only the final state, if given. If an initial state is given and a
final state is not given, we find, in pre-processing, all states S(T") reachable from the initial state in T
frames, and initiate Q with those. Algorithm@]shows the pseudocode, which assumes that both an
initial and final state are given. In each iteration, we expand botlﬂ searches, handling queues as in
Standard MINT. Upon extracting (s, /) from Q; and (s?, t*) from Qj, we update the associated
visited-token sets, V¢ and V), and store associated costs in arrays d¢ and d,. We then consider
tokens (s7, ¢/ + 1) for all neighbors s/ of s/ in G and tokens (s, t* — 1) for all neighbors % of s? in
the graph G/, In Lines[10]and[T5]we omit the details, which are found in Algorithm[I] Lines

When the two sides meet generating a path of length 7', we update the hitherto best path cost p, if the
newly found path improves on it. Such a path is provably optimal, hence the algorithm terminates,
when the sum of costs of tokens dequeued from Q and Q exceeds j. To avoid double-counting
emission probabilities, we add the emission probability of the last vertex visited while building a path
only in the priority of Q, thus the cost of any path through (w, t) is ds[(w, t)] + dp[(w, t)].

Proposition 3. Bidirectional MINT is correct.

Bidirectional MINT Bound combines Bidirectional MINT and MINT Bound in one algorithm that
searches in both directions and lower-bounds the total T-frames-long path costs used as priority
values in both queues. The search in both directions follows the order determined by the cost of
arriving to a state in a given number of steps (frames) plus a lower bound on the cost of arriving from
there to the the end of the path. The single-frame lower bound for the forward search is as in MINT
Bound. For backward search, it is the lowest cost of moving from a frame to the next one in the
reverse HMM graph G,..,, i.e., the lowest value of — log As]-,si — log By, ,, over all edges (sj, Si)

'A more refined strategy would choose which side to expand, representing an opportunity for future work.
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in G,.,. We obtain both bounds by pre-processing with a single graph traversal. The correctness of
Bidirectional MINT Bound follows from the correctness of MINT Bound and Bidirectional MINT.

3.3 LINEAR-SPACE MINT (MINT-LS)

The backtracking discussed in Section [3.2] keeps all tokens in memory even after they are popped
from Q, incurring a O(KT) space complexity. Instead, we reconstruct the solution by a divide-and-
conquer strategy and keep the size of Q in O(K) by a depth-first-search strategy.

To avoid materializing paths, we adapt the logic of SIEVE-Middlepath (Ciaperoni et al. [2022)
to MINT. SIEVE-Middlepath reformulates the Viterbi algorithm by a divide-and-conquer strategy.
Instead of tabulating all subproblem solutions, it only maintains those for the most recent frame, which
it uses to solve subproblems in the next frame; it records, with each solution, the edge at the middle
frame of the solution path (the middle pair), which it identifies upon reaching that middle frame. After
termination, it recursively reruns on the £ /2-hop predecessors and successors of the solution middle
pair to reconstruct the full path. Likewise, MINT-LS identifies a middle pair upon reaching a middle
frame and stores it in the solution token. After establishing the best token at the last frame, it reruns
among the predecessors and successors of that token middle pair to reconstruct the entire Viterbi path.
Middle pairs are retrieved in orderly fashion, as in an in-order tree traversal (Ciaperoni et al.,|[2022).
Eschewing path materialization requires O(K 2T log T)) time, yet does not guarantee O(K) space, as
the size of Q may still grow to ©(KT). Next, we address the queue size.

We keep the size of Q in check via a depth-first-search (DFS) strategy which is novel in this context.
When Q exceeds a predefined size threshold 6 after we insert a token (s;, ), we pick the lowest-cost
token among the set of tokens for s;, ST = {(s;,-)}, say (s;, t*), and produce all its derivatives on
demand via a DFS traversal of the HMM graph G from s;. Each branch of DFS terminates when
it either reaches the last frame or injects a token into the token set of a state s;/ that substitutes a
pre-existing token without memory increase. The paths DFS explores identify and pass on middle
pairs as usual. By virtue of this DFS operation, we maintain a priority queue of size O(K). In
practice, we let the priority queue size threshold 6 grow slightly with 7', as an increase of T" without a
commensurate alteration of 6 triggers more DFS calls and hence burdens runtime.

Algorithm[d]in Appendix [E] provides the pseudocode of MINT-LS, which invokes the DFS subroutine
of Algorithm therein. MINT-LS propagates tokens like MINT does, yet it stores in each token (s;,t)
its predecessor state and the currently valid middle pair for the path this token belongs to. These details
help identify the subproblems to be solved recursively. Upon reaching the final frame (and final state,
if given), it extracts the middle pair associated with the solution path and reruns recursively among N,-
hop predecessors of the middle pair in the N, frames preceding it and among N,-hop successors
of the middle pair in the N, frames following it, found by breadth-first search (Lines [T3] and 22).
Besides, MINT-LS eschews storing new tokens that would enlarge the queue beyond a threshold 6 by
invoking the DFS subroutine that only stores tokens replacing others, or at the last frame.

3.4 THE TECH ALGORITHM

We apply Isabella to another optimal-sequence problem, V-Optimal histogram construction (Jagadish
et al.,|1998)), outlined in Section[2} A V-optimal (V for variance) histogram uses the mean value & =

Z._Jﬁ ZZ: jTrasa representative to minimize the Euclidean error in a bucket I, extending from
the j* to the 7*® value in the sequence, E(j,1) = Z;C: (Te — #)2. The total approximation error is

aggregated over all buckets. V-OPT histogram construction algorithms use incremental sums and
sum of squares, stored in arrays .S and S'S, respectively, to obtain any F (i, j) efficiently as:

(S[i] - Slj —1])?
(i—j+1)

The algorithm finds, for each combination (7, ) of a value index and number of buckets, the cost of
the optimal b-bucket histogram covering the first  values in the sequence, as:

E*(i,b) = min E*(3;b—1) + E(j +1,), “

E(j,i) = (SS[i] - SS[j —1]) — A3)

Note that E*(i,b) = 0 for i < b and E*(i,1) = E(l,i?. The algorithm returns the optimal
cost E*(n, B) of the V-optimal histogram for a sequence of length n and B buckets and constructs

the histogram by backtracking. We map the histogram construction problem to Isabella as follows:
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1. The data space X is the data series I = {z1, ...z, } and an eligible sequence (z;), z; € X,
Jj €{1,...,£} comprises ordered items (z;,, xi,, . .., x;, ) denoting segment boundaries.

2. The set X of eligible sequences in X includes all ordered sequences ending at z,.

3. The gap function G(j, 1) is the bucket error E(j, ), as above.

4. The selective dioid is (R U {400}, min, 4, 400, 0). Thus, the value function f : X — R
assigns an approximation error Zszl E) to a histogram.

5. The problem seeks an error-minimizing eligible histogram of B boundaries (& = min).

6. The recursive function Opt(i, £) that stores the optimal value for an eligible sequence of
length ¢ ending at item z; € X is the function E*(i,b = /).

7. The solution by DP over sequences of increasing length from X’ is given by Equation 4]

The DP algorithm for V-OPT histogram construction (Jagadish et al., [1998) by Equation [] re-

quires O(n?B) time and O(nB) space. We discuss four variants of histogram construction by
Isabella, TECH (Time-Efficient Histogram), corresponding to the four variants of MINT.

Algorithm 3: Standard TECH

Data: Input sequence I, integer B.
Result: V-Optimal Histogram Error E* (n, B).
Q <+ Queue((1,1), priority = 0);
S« ;585 « [V < {};n < I.length;
S[1] « I[1]; SS[1] + I[1])%;
fori € {2,...,n}do
| S[i] < S[i — 1] + I[i]; SS[i] + SS[i — 1] + I[i]?;
forje{2,...,n—(B—1)}do
| Quinsert((j, 1), priovity = E(1, j));
while Q # 0 do
(i,b),p <+ Q.pop(); // (values,buckets),priority
V.add((¢, b));
if b = B A i = n then break;
if b < B then
forje{i+1,..., n—B+b+1}do
if (j,b+ 1) ¢ V then
d<+—p+ E(®,j);
if (j,b+1) ¢ Q then
| Quinsert((j,b+ 1), priority = p+ E(i+ 1,7))
QG b+ 1)) > p+ B(i+ 1,7) then
|  Q.update((j,b+ 1), priority = p + E(i + 1,5))

return p;

Standard TECH. Algorithm 3| presents Standard TECH, which, like MINT, employs a priority
queue Q to prune computations, where the priority of entry (7, b) is the cost of the b-bucket histogram
for the first ¢ values, p(i,b) = E*(i,b). After computing the S and S.S arrays, used to compute the
error measure by Equation in each iteration, TECH dequeues the pair (i, b) of lowest error, adds it
to a set V of visited tokens, and, provided b < B, computes via (4, b) the error for each pair (j,b+ 1)
with j > i that is not in V and inserts or updates (j,b + 1) in Q accordingly; thereby, it explores
possible next buckets. We do not iterate over (j, b+ 1) pairs forall j > ¢, butstopatj = n—B+b+1
since there must be at least B — b — 1 values after j to make B buckets in total. The algorithm
terminates after it dequeues (n, B). Correctness follows as in Proposition|[} after (n, B) is dequeued,
there can be no lower-cost histogram of the same series and B. For further pruning, we use an upper
bound U BJi, b] on the cost of a (B — b)-bucket histogram for the series {i + 1,...n}, derived in
Proposition [4| below. If, after visiting (¢, b), we find j* > i such that E(i, j*) > UB]Ji, b], we eschew
computing E(i, j) for j > j*, as we have already exceeded the upper bound on the error therefrom.

TECH Bound. This variant uses bounds on the cost of a B-bucket histogram instead of the cost of a
partial histogram with b < B buckets. Given (i, b), we partition the series {i + 1,...n}in B — b
equal-width buckets. The minimum error among such buckets is a lower bound to the V-optimal
histogram cost, while the sum of those errors is an upper bound, which we may use for pruning.

Proposition 4. The minimum error min, Ey among b buckets of an equal-width partitioning a
sequence I is a lower bound to the V-optimal histogram cost and )", Ey, is an upper bound.

TECH Bound adds to the priority of each pair (i,b) the associated lower bound LBJi,b]. Upon
arrival at the end of the series, there is no lower bound to be added, and the algorithm outputs the
same cost as Standard TECH. We find these bounds by building equal-width histograms in a single
pre-processing step. The correctness of TECH Bound follows as the correctness of MINT Bound.
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Other TECH variants work by analogy to MINT variants. Bidirectional TECH applies forward and
backward BestFS in alternation. When we pop a pair (7, b) from Q, we consider entries (j,b + 1)
with j > 4, and, if the backward search has already visited (j, B — b — 1), we check whether the
cost df[(i,b)] + E(i,7) + dp[(j, B — b — 1)] improves upon the current best cost 1, and likewise
in backward search. The search terminates when the sum of the costs of pairs from both queues
exceeds the current best cost p. Bidirectional TECH Bound combines Bidirectional TECH with
TECH Bound, with reversed lower bounds that consider sequences of the form {1,...¢} rather
than {i + 1,...n}. TECH-LS and variants thereof limit space needs; in place of a middle pair of
states, they detect a middle bucket that splits the data series in halves. Previous work applied such a
space-saving solution with dynamic programming (Guhal, 2005)).

4 EXPERIMENTS

Implementation. We ran experiments on a machine with a 2 x 12 core Xeon E5 2680 v3 2.50 GHz
processor and 128 GB memory. Our implementation and experimental data are availableﬂ online.

Baselines. On Viterbi decoding, we use the Viterbi algorithm (§3.2) with edge-aware implementation
as a baseline. We also juxtapose MINT-LS to a Viterbi variant that naively recomputes sub-paths for
space-efficiency (Ciaperoni et al., 2022)), checkpoint Viterbi (Tarnas & Hughey,,[1998)), which achieves
limited space efficiency by segmenting the sequence into /7 parts, and SIEVE variants (Ciaperoni
et al.| 2022)), including SIEVE-Middlepath (from which MINT-LS draws), Standard SIEVE (which
recursively partitions the state space rather than the sequence), and SIEVE-Hyperloglog, which
uses approximate counts of the number of predecessors and successors of a state (Flajolet et al.,
2007). On histogram construction, we use as a baseline the DP V-optimal histogram construction
algorithm (Jagadish et al., [1998)) (§ @ Appendix E] describes data, measures, and parameters.
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Figure 2: Decoding, synthetic data. Runtime vs. path length and state space size; axes in log scale.

4.1 RESULTS ON DECODING

Synthetic data, runtime vs. T' and K. Figure[2]plots runtime as a function of path length 7" and state
space size K on Erd6s—Rényi data. MINT accelerates decoding significantly, thanks to visiting only
a small fraction of the tokens visited by Viterbi. Futher, MINT-LS exhibits only a marginal runtime
overhead compared to MINT. Still, the time to visit a single token is lower in Viterbi as MINT incurs
more overhead for managing the priority queue. Therefore, as the figure illustrates, savings drop
as T grows. This result arises from the data generating model, which reflects a worst-case scenario
whereby the likelihoods of all paths converge to similar values for large enough 7, therefore MINT
visits too many tokens. As we will see, when the probability is more concentrated over a limited
subset of paths, as in real-world speech recognition data, MINT yields higher savings; it identifies the
most promising paths and neglects the others, thus visiting only a small fraction of the tokens visited
by the Viterbi algorithm. Appendix [C]presents further results on runtime and other aspects.

Real data, runtime vs. T' and K. Figure [3| plots our results on forced-alignment and standard
decoding with real data. Here, MINT results in savings of up to three orders of magnitude compared
to Viterbi, as on real data it only explores a few promising paths. More remarkably, enlarging the state
space by taking larger snowball samples of the HMM does not impact MINT, as it already avoids
non-sampled states. Yet, state space growth greatly affects Viterbi. Moreover, MINT-LS variants gain
up to three orders of magnitude lower runtime than Viterbi even while controlling memory too.

“https://github.com/TimeEfficientDP/BestFirst
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Figure 3: Decoding, real data; forced alignment (L), standard decoding (R); runtime vs. 7" and K.

—#— Naive Space Efficient Viterbi —%— Vanilla Viterbi <~ Checkpoint Viterbi ©— SIEVE
—4— SIEVE-HyperLoglLog —#— SIEVE-Middlepath —»— Standard MINT-LS —<— Bidirectional MINT-LS
w 4 8
5 10 10
2 o 6
g 10 ~10
0 ) o 4
210 % wa £10 %
c -2 — | o] 2 ¥
ogc 10 =10
1 2 1 2
10 10 10 10
Path Length Path Length

Figure 4: Decoding, real forced alignment data; runtime (left) and memory consumption (right) vs 7.
Shaded regions indicate the range of memory consumed over recursive calls.

Real data, runtime and memory vs. T'. Figure @] portrays runtime and memory needs, including
those of DP-based SIEVE (Ciaperoni et al.| [2022) variants, and plots the minimum, maximum and
median memory usage across recursion levels. While DP-based baselines require static memory at
each level, MINT-LS’s requirement is dynamic, hence we consider its peak memory per level. Notably,
the median memory needs of MINT-LS do not grow significantly with 7', while the maximum rises
as the peak queue size grows with 7', yet remains under that of SIEVE-Middlepath, the least memory-
demanding SIEVE variant. We show results only vs. path length 7", since subsampling the state space
in real data does not significantly affect the performance of MINT-LS, as Figure []illustrates.
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Figure 5: Histogram construction, synthetic data (L), real data (R); runtime vs. B and n.

4.2 RESULTS ON HISTOGRAM CONSTRUCTION

Figure [5] shows the histogram construction runtime on synthetic data vs. B for input sequence
length n = 1010, and that of Standard TECH and the standard V-OPT algorithm vs. n for different
values of A = %. Standard TECH often suffices, as its variants do not bring significant advantages.
Linear-space TECH incurs a manageable runtime overhead for the sake of space efficiency. Still, all
Isabella variants gain in time efficiency as B grows. This growth delimits the search space for each
bucket, rendering the problem more amenable to BeFS. Contrariwise, standard DP cannot contain the
search space, hence its runtime surges for large B. Figure[5]also shows results on real data. The gains
of TECH solutions are more emphatic here, already expressed with fewer buckets, as TECH exploits
data similarity patterns that facilitate summarization, whereas standard DP lacks such capacity.

5 CONCLUSION

We introduced Isabella, a framework that efficiently solves problems of fixed-length path optimization
by best-first search, while delimiting its space complexity by depth-first search and a divide-and-
conquer strategy. We designed an Isabella-based algorithm for Viterbi decoding and one for histogram
construction, with bidirectional and bounding variants. Our experiments evince that Isabella gains up
to four orders of magnitude in time and space efficiency, the advantage being more pronounced on
real data with nonuniform path cost distributions. In Appendix D} we apply Isabella to temporal-graph
community search.

10
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A PROOFS

Proposition 1. Standard MINT is correct.

Proof. Let T be the set of all tokens (i.e., state-frame pairs) and V the set of visited tokens, for which
optimal cost has been computed. Initially V includes the source s with optimal cost p, = —log B, ,,,
and —p; is its log-likelihood. In each iteration, we add to V a token (s;, t) from 7 \ 'V with cost p;.
To complete the induction, we must show that p; is optimal for its length . First, if the true ¢-
length-optimal path goes only through tokens in V, for which, by the inductive hypothesis, the
optimal cost is known, then p; must be ¢-length-optimal. Assume that the ¢-length-optimal path goes
through a token (s, ¢") not in V; this token necessarily has cost p; > p;, hence any path through it is
suboptimal. Therefore, —p; is the maximum Viterbi path log-likelihood max,, T[s;, t]. O

Proposition 2. MINT Bound is correct.

Proof. We prove the statement by contradiction. Assume the algorithm returns a token (s*,7") with
cost ¢* > max,, T[s;, T]. Then there must be an unvisited token (s, ¢'), which, if propagated to
the last frame, produces a path of likelihood max;, T|[s;, T]. Such a token would have priority ¢’ +
(T —t') - ¢, where ¢ is the real cost of arriving to s in ¢’ frames. Since ¢; lower-bounds the cost
of moving from frame to frame, it follows that ¢ + (T' — ¢') - ¢é1 < max,, T[s;, T] < ¢* at any
time ¢’ < T. Therefore (s*,T') cannot be dequeued before (s’,t’), ergo the proof is completed. [

Proposition 3. Bidirectional MINT is correct.

Proof. The algorithm alternates between a forward and backward step and maintains the best-so-far
path of T steps. Correctness rests on the stopping condition. The algorithm terminates when either (i)
both queues are empty or (ii) the elements (sfc ,t¥) and (s?,t?) popped from the queues have joint
cost dy [(s{ )] + dp[(s?, %)) that is larger than the current best path cost p. Regarding condition
(i), when both queues are empty, all possible paths have been generated, so the algorithm returns the
optimal. Regarding condition (ii), assume that the optimal path is not yet found when the algorithm
terminates returning —u. Then there must be a path Q* of cost ©* < p containing at least one not
yet visited token in V¢ U V5. Such a token would have cost at least d ¢ [(s{, t/)] on the forward side
and dy[(s?,t*)] on the backward side, hence path Q* would have cost y* > y, a contradiction. [

Proposition 4. The minimum error ming E, among b buckets of an equal-width partitioning a
sequence I is a lower bound to the V-optimal histogram cost and )", Ey, is an upper bound.

Proof. Let Hp be the V-optimal histogram of size B on sequence I and H}; be the histogram of
the same number of buckets on the same sequence, where all buckets have the same size, except
possibly the last. Let [s;, e;] be the boundary positions and E; the error of the j th bucket in H, and
let [s’;, €] and £, be the corresponding boundary positions and error of the j th bucket in HY;. Then at
least one bucket of Hp, say the jth, has a; < a;- and b; > b;-, i.e., it fully contains the corresponding
bucket in H }3. Then, as E' is monotonically non-decreasing with bucket width, E; > E; besides,
E; < ZhEHB E},, ergo miny, Ej < E; <E; < ZheHB E}, hence miny, Ey, is a lower bound to
the V-optimal histogram cost. Furthermore, ), E; is an upper bound on the V-OPT histogram cost,
since, by definition of the V-OPT histogram Hg, Y, E, < >, E}. O

B DATA, MEASURES, AND PARAMETERS

Data. We experiment on both synthetic and real-world datasets. We evaluate MINT and TECH
variants on synthetic data generated according to the following models:

* Erdds—Rényi model where each hidden state is emitting and connected with any other state with
probability p = 0.01; transition and emission probabilities are generated uniformly at random, thus
arbitrary cycles may be present. All states are emitting.

13
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* Skewed path likelihood model, where we generate a fixed number N4, (100, by default) of paths
of length T starting from initial state s, and composed of emitting states. To each such path we
assign a probability drawn from a power law distribution p(z, ) = az®~!, which we distribute
evenly across transition and emission probabilities of all states in the path. As in the previous
case, all states are emitting. We use this model to investigate how skew in the distribution of path
likelihoods affects the advantage granted by Isabella-based solutions.

Further, we assess MINT on real-world speech recognition data:

» Wall Street Journal (WSJ) corpus data: we use a real-world composite HMM for speech-text
forced alignment, the process of aligning text to audio recordings, which is also tackled by the
Viterbi algorithm. The model is built using the HTK software toolkit (Young et al., [2002) and
contains 5529 states (including initial states), out of which 3204 are emitting; it was trained
on the WSJ corpus (Paul & Baker, [1992) aiming to align speech recordings from the TIMIT
corpus (Garofolo et al., [1993).

* Resource Management (RM) corpus data: we use a real-world composite HMM for decoding,
trained on the RM speech corpus (Price et al.l[1993)) and built using the Kaldi software toolkit (Povey
et al.,[2011)), The graph comprises 25 333 states (including initial state) and 175 428 edges, out of
which 162 255 also carry emission probabilities. We decode subsets of a simple recorded utterance
of up to 100 frames.

The observation sequence Y consists of feature vectors of Mel-Cepstrum cepstral coefficients and
their derivatives and emission probabilities are given by multivariate Gaussian mixture models.

Similarly, we evaluate TECH in:

* Synthetic sequences of integers in the range [0, 50].
* Dow-Jones Industrial Average (DJIA) closing values real data.

Metrics. We measure runtime in seconds (s) and memory in bytes (B). In all cases, we report the
average over 5 repeated runs.

Parameters. Regarding decoding in HMMs, in experiments with synthetic data, we vary T in
geometric progression of 9 values from 5 to 30 with K = 7500; in experiments with real data,
we vary T in geometric progression of 9 values from 5 to 100 with K fixed to the size of the
original state space. Furthermore, in synthetic data we vary K in a geometric progression of 5 values
from 1000 to 16000 with 7" = 10; in real data, we vary K over 5 values in geometric progression
from 1000 (forced alignment) or 1900 (decoding) to approximately the size of the original state
space, with T' = 30. To vary K in real-world HMMs, we sample subsets of the original HMM graph
via snowball sampling from a start state source. To investigate the combined impact of K and 7T,
we also vary them simultaneously. We also vary K € {25 x 103,30 x 103} and T’ € {25, 30} to
monitor how MINT variants behave during runtime in terms of memory usage and the evolution of
path likelihood. In the experiment with the skewed path likelihood model, we also vary the power
law parameter « controlling skewness in 17 values from 1072 to 102 with Npawn, = 100, T = 10
and K = 1500. In the space-efficient variants of MINT-LS, we set the memory budget 6 to 10%
of K x T'. However, with Erd6s—Rényi data, which call for a larger budget as they reflect a worst-case
scenario, we set 6 to 90% of K x T.

For the histogram construction experiments, we vary the parameter B from 100 to 1000, while
holding 7 fixed to 1010. We also consider sequences of length n increasing from 100 to 1000 for
the different values of A = % indicated in the results. With TECH-LS, we set the memory budget
to 10% of n x B.

C ADDITIONAL EXPERIMENTS

Runtime vs. a. To demonstrate the effect of path likelihood skew using synthetic data, Figure[6]
plots runtime as a function of the parameter « of the power law distribution over the path likelihoods.
Notably, the highest savings are obtained for « close to 1. This is due to the fact that, for remarkably
smaller or larger «, all paths tend to be equally likely, so MINT cannot focus on a small subset of
paths. Nevertheless, even in the case where the path likelihood distribution approaches the worst
case, as in the Erd6s—Rényi model, we still have high savings for small 7', which is a popular
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setting in modern speech recognition. Regarding different implementations of MINT, we observe
that the use of lower bounds is not always crucial for runtime; however, as « increases, MINT
Bound vastly outperforms Standard MINT by virtue of its capacity to prune paths from consideration
more aggressively. Furthermore, bidirectional-search variants accomplish the highest efficiency
on synthetic data, both those generated by the Erd6s—Rényi model and those with skewed path
likelihoods; these results vindicate our development of those enhanced solutions.

=%—_\Viterbi —8— Standard MINT ¥ MINT Bound —&— Bidirectional MINT
== Bidirectional MINT Bound =p— Standard MINT-LS =& Bidirectional MINT-LS
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Figure 6:  Decoding; synthetic data with skewed path likelihoods; runtime vs. skew a (left);
synthetic Erd6s—Rényi data (center) and synthetic data with skewed path likelihoods (right): runtime
vs. both linearly growing path length 7" and exponentially growing state space size K, indicated as
(T, K); shaded regions indicate the min and max runtime due to randomness in data generation.

Runtime vs. T and K tuned in unison. We also measure runtime as a function of both 7" and K on
Erd6s-Rényi model data and on those with skewed path likelihood distribution with o = 1. Figure[f]
shows the results. Shaded regions indicate the minimum and the maximum over repeated experiments,
which convey the extent of random variation; as the figure shows, that extent is quite limited. The
savings observed as we increase both 7" and K are consistent with our previous findings and most
pronounced in the skewed likelihoods scenario. In the Erd6s—Rényi model, as most paths of a given
length have similar likelihoods, the savings are more modest and decrease with the growth of both T'
and K.

Real-time memory monitoring. Figure|/|shows memory requirements at run time for four parameter
configurations on synthetic data with skewed path likelihood distribution using o« = 1; for reference,
we also provide the constant memory used by standard Viterbi. Notably, MINT variants reduce the
memory requirements of Viterbi by several orders of magnitude. Unsurprisingly, the two bidirectional-
search variants consume slightly more memory, yet need fewer iterations till termination, as they
apply both a forward and a backward search with two queues. With MINT-LS, we show memory
consumption vs. iterations or DFS calls. While by the chosen budget, MINT-LS variants use as little
as 25% of the memory used by MINT variants; this advantage may grow on demand by reducing the
memory budget 6.

—\/iterbi = Standard MINT MINT Bound = Bidirectional MINT
- Bidirectional MINT Bound = Standard MINT-LS - Bidirectional MINT-LS
7 7
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(K = 25000,T = 25) (K = 30000,T = 30)

Figure 7: Synthetic data with skewed path likelihood distribution; memory requirements on the fly.

Effect of backtracking. As explained in Section [3.2} by default all MINT variants store paths
explicitly; however, we may reduce memory usage by only storing the predecessor of each token (s;, t)
and eventually reconstructing the optimal path by backtracking over such links, with a small runtime
overhead and savings in memory consumption. We refer to the resulting alternative implementation
of MINT as MINT-Backtracking. To illustrate this effect, Figure [§| presents the maximum memory
usage of the two implementations of standard MINT under the HMM graph model with skewed
path likelihood distribution (ov = 1) as a function of both K and 7". While the difference in memory
requirement is evident, we measured the corresponding runtime difference to be negligible. Hence,
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when memory represents a hard constraint, MINT-Backtracking provides an attractive tradeoff
between runtime and memory needs. Besides, MINT-Backtracking extends seamlessly to all variants
of MINT. In the case of bidirectional-search-based variants, backtracking proceeds in both directions
after the optimal path is found.
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Figure 8: Decoding, synthetic data with skewed path likelihood distribution. Memory requirements
of default MINT and more memory-efficient implementation MINT-Backtracking. Maximum (peak)
memory vs. path length T" and state space size K, indicated as (7', K'). Ratio % is fixed.

Real-time log-likelihood monitoring. We also monitor the optimal path log-likelihood absolute
value across iterations. This absolute value grows, as longer paths have lower likelihood than shorter
ones. Figure[J]presents our results, using the same four parameter configurations as in Figure[7} In
all algorithms the likelihood approaches the optimal value swiftly and monotonically. In the case
of standard Viterbi, we plot the highest likelihood found at the end of each frame (i.e., path length
considered), hence Viterbi appears to undergo fewer iterations. For the two bidirectional MINT
variants, we plot the sum of likelihoods associated with the last tokens de-queued from the forward
queue Qy and the backward queue Q; in each iteration. For other algorithms, we plot the likelihood
associated with the token dequed from Q in each iteration. We found that MINT-LS variants exhibit
the same progression of path likelihood as the corresponding MINT variants.
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Figure 9: Synthetic data, skewed path likelihood distribution; path log-likelihood (abs) on the fly.

D CASE STUDY

We conduct a case study that applies Isabella on an emerging real-world problem of femporal
community search (Galimberti et al. [2020). Given a temporal graph G+ defined over a temporal
domain 7 = [0,1, ... ¢max), an integer h, and a set of query nodes g, the problem seeks a partition-
ing P of the temporal domain into h segments and a subgraph G, containing the query nodes ¢
within each bucket, which yield the maximum sum of minimum degrees of subgraphs in P. This
problem is pertinent nowadays as the growing availability of timestamped data generates interest in
temporal graph management. Further, large real-world temporal graphs typically align themselves in
evolving communities. To study such communities, it often suffices to focus on a restricted set of
query nodes, rather than partitioning the entire temporal graph.
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The problem is solved by the dynamic-programming recursion:

P = max p(i.b—1) + v+ 1.0) ®

where p* (i, b) denotes the optimal objective value for a partition of the first ¢ timestamps in b segments
and vy (j+1,4) is the maximum minimum degree of a subgraph containing query nodes ¢ and enduring
from the (j + 1) to the i*" timestamp. A cross-examination of Equation and Equation reveals
their analogy, with the main difference lying in the value associated with each segment, i.e., in the
terminology of Section[3] the gap function. Thus, the dynamic-programming algorithm for histogram
construction also solves temporal community search with the necessary modifications.

Nevertheless, to compute the gap function v; (j, i) we need to identify a subgraph containing the

query nodes ¢ of maximum minimum degree, for each query and each of the O(¢2,,,.) possible
(J,4)-buckets. The solution in (Galimberti et al., [2020) precomputes all gap function values through
span-core decomposition and uses them in the dynamic-programming recursion of Equation 3]

== TCS =@— TECH-TCS

OO OO0O

10" 10°
Number of Buckets

Running Time (s)
NP

Figure 10: Temporal community search, real-world interaction data; runtime by number of buckets
the temporal domain is partitioned into; x-axis on log scale.

We apply Isabella to obtain an advantage over the DP-based solution to temporal community search
on a real-world temporal network dataset that captures interactions between students and teachers
of nine classes recorded during five days in a high school in France (Mastrandrea et al.,|2015). The
temporal graph has 47.590 temporal edges (interactions) and 327 nodes (students and teachers).
These parameters only affect the offline pre-computation of gap function values and not the query
processing phase. The length of the sequence to be partitioned is ¢,,4, = 1212. We apply the standard
DP algorithm (TCS) and an algorithm based on Standard TECH (TECH-TCS) on the problem with
a query comprising the node labelled 1. Figure[I0]illustrates our runtime results vs. the number of
buckets that partition the temporal domain, varied in geometric progression with ratio 1.5, from 10
to 608. Notably, TECH-TCS outpaces TCS, even for a few buckets. We obtained similar results with
different query nodes and larger query node sets, as the query affects the pre-computation stage but
not the search space of the DP-based solution and its Isabella-based counterpart.

E PSEUDOCODES

Here we collect algorithm pseudocodes for MINT-LS.
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Algorithm 4: MINT-LS

Data: HMM graph G, transition and emission probabilities A and B, states S, observations Y, ordered time frames F', queue size
threshold 6, initial and final state startSt and lastS't.
1 7« [(F[0] 4+ F[-1])/2],V < {} // initialization
2 Q + Queue((startSt, F[0]), p (startSt, F[0]) = d, pred = —1, middle_pair = (=1, —1));
3 while Q # 0 do

4 (si,t), pi, pred, middle_pair < Q.pop();
5 V.add((si,t));
6 ift = 7 A middle_pair = (—1, —1) then
7 ‘ middle_pair < (pred, s;); // update middle pair
8 if (t = Fl.last) A (lastSt = —1 V lastSt = s;) // lastSt = —1 if not input
9 then
10 S — s S+ < middle_pair; // extract middle pair
11 Np f%w, // number of frames before the middle pair
12 if N, > 1// continue recursion in predecessors
13 then
14 F < F[: Np]; // update frames
15 Sp < FIND-T-HOPPRED(s,, —, Np); // find predecessors of s, _
16 MINT-LS(G, A, B, Sy, Y, F, 0, startSt,s,  );
17 Ng « F.size() — Np; // number of frames after the middle pair
18 print (s, —,s, 1);// in-order print of middle pairs
19 if Ng > 1// continue recursion in successors
20 then
21 F < F[—N; :];// update frames
22 Ss + FIND-T-HoPSUCC(s,, 4, Ns);// find successors of s, 4
23 MINT-LS( G, A, B, Ss,Y, F,0,s, +,lastSt);
24 for s; in G[s;] do
25 if (sj,t+1) ¢ VAs; €S then
26 d <+ p; —logASiysj —longj,yt_H;
27 if Q[(sj,t+1)] >dV (s;,t+ 1) ¢ Q then
28 if Q.size() > 0 A (sj,t+ 1) ¢ Q then
29 ‘ DFS(G, A,B,S,Y, s;,pred,t + 1, d, middle_pair, Q);
30 else
31 if (sj,t+ 1) ¢ Q then
Q.insert((sj,t + 1), p(sj,t + 1) = d, pred = s;, middle_pair = middle_pair) ;
32 else Q.update((s;,t+1),p(s;,t+ 1) = d,pred = s;, middle_pair = middle_pair) ;
Algorithm 5: DFS
Data: HMM graph G, transition and emission probabilities A and B, states .S, observations Y, initial state s;, predecessor pred, initial
frame ¢, initial path priority p;, middle_pair, queue Q.
Result: updated queue Q.
1 if t = 7 then
2 ‘ middle_pair < (pred,s;); // update middle pair
3 ift < T then
4 for s; in G[s;] do
5 if s; € S then
6 d(fpiflogAsi,Sj 7longj7yt+1;
7 if (sj,t+ 1) € Q then
8 if Q[(s;,t+ 1)] > d then
9 ‘ Q.update((s;,t + 1),p (s;,t + 1) = d, pred = s;, middle_pair = middle_pair);
10 else
11 ‘ Q < DFS(G, A, B, S,Y, sj, 84, t + 1,d, middle_pair, Q); // continue DFS
12 else
13 if (s;,t) ¢ Q then Q.insert((s;,t),p (si,t) = p;, pred = pred, middle_pair = middle_pair) ;
14 else Q.update((s;,t),p (si,t) = p;, pred = pred, middle_pair = middle_pair) ;
15 return Q;
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